RFC 3156

Research, RFC, Technology
Network Working Group M. Elkins Request for Comments: 3156 Network Associates, Inc. Updates: 2015 D. Del Torto Category: Standards Track CryptoRights Foundation R. Levien University of California at Berkeley T. Roessler August 2001 MIME Security with OpenPGP Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2001). All Rights Reserved. Abstract This document describes how the OpenPGP Message Format can be used to provide privacy and authentication using the Multipurpose Internet Mail Extensions (MIME) security content types described in RFC…
Read More

RFC 4880

Research, RFC, Technology
Network Working Group J. Callas Request for Comments: 4880 PGP Corporation Obsoletes: 1991, 2440 L. Donnerhacke Category: Standards Track IKS GmbH H. Finney PGP Corporation D. Shaw R. Thayer November 2007 OpenPGP Message Format Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Abstract This document is maintained in order to publish all necessary information needed to develop interoperable applications based on the OpenPGP format. It is not a step-by-step cookbook for writing an application. It describes only the format and methods needed to read, check, generate,…
Read More

RFC 8077

Research, RFC, Technology
Internet Engineering Task Force (IETF) L. Martini, Ed. Request for Comments: 8077 G. Heron, Ed. STD: 84 Cisco Obsoletes: 4447, 6723 February 2017 Category: Standards Track ISSN: 2070-1721 Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP) Abstract Layer 2 services (such as Frame Relay, Asynchronous Transfer Mode, and Ethernet) can be emulated over an MPLS backbone by encapsulating the Layer 2 Protocol Data Units (PDUs) and then transmitting them over pseudowires (PWs). It is also possible to use pseudowires to provide low-rate Time-Division Multiplexed and Synchronous Optical NETworking circuit emulation over an MPLS-enabled network. This document specifies a protocol for establishing and maintaining the pseudowires, using extensions to the Label Distribution Protocol (LDP). Procedures for encapsulating Layer 2 PDUs are specified in other documents. This document is a…
Read More

RFC 7761

Research, RFC, Technology
Internet Engineering Task Force (IETF) B. Fenner Request for Comments: 7761 Arista Networks STD: 83 M. Handley Obsoletes: 4601 UCL Category: Standards Track H. Holbrook ISSN: 2070-1721 I. Kouvelas Arista Networks R. Parekh Cisco Systems, Inc. Z. Zhang Juniper Networks L. Zheng Huawei Technologies March 2016 Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised) Abstract This document specifies Protocol Independent Multicast - Sparse Mode (PIM-SM). PIM-SM is a multicast routing protocol that can use the underlying unicast routing information base or a separate multicast- capable routing information base. It builds unidirectional shared trees rooted at a Rendezvous Point (RP) per group, and it optionally creates shortest-path trees per source. This document obsoletes RFC 4601 by replacing it, addresses the errata filed against it, removes the optional (*,*,RP), PIM…
Read More

RFC 6353

Research, RFC, Technology
Internet Engineering Task Force (IETF) W. Hardaker Request for Comments: 6353 SPARTA, Inc. Obsoletes: 5953 July 2011 Category: Standards Track ISSN: 2070-1721 Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol (SNMP) Abstract This document describes a Transport Model for the Simple Network Management Protocol (SNMP), that uses either the Transport Layer Security protocol or the Datagram Transport Layer Security (DTLS) protocol. The TLS and DTLS protocols provide authentication and privacy services for SNMP applications. This document describes how the TLS Transport Model (TLSTM) implements the needed features of an SNMP Transport Subsystem to make this protection possible in an interoperable way. This Transport Model is designed to meet the security and operational needs of network administrators. It supports the sending of SNMP messages over TLS/TCP and…
Read More